_____ Date

5-4

G-CO.3.10,

G-GPE.2.4

The Triangle Midsegment Theorem Focus on Reasoning

Essential question: *What must be true about the segment that connects the midpoints of two sides of a triangle?*

A **midsegment** of a triangle is a line segment that connects the midpoints of two sides of the triangle.

Investigate midsegments.

- A Use geometry software to draw a triangle.
- **B** Label the vertices *A*, *B*, and *C*.
- C Select \overline{AB} and construct its midpoint. Select \overline{AC} and construct its midpoint. Label the midpoints *D* and *E*.
- **D** Draw the midsegment, \overline{DE} .
- **E** Measure the lengths of \overline{DE} and \overline{BC} .
- **F** Measure $\angle ADE$ and $\angle ABC$.
- G Drag the vertices of △ABC to change its shape. As you do so, look for relationships in the measurements.

REFLECT

1a. How is the length of \overline{DE} related to the length of \overline{BC} ?

1b. How is m $\angle ADE$ related to m $\angle ABC$? What does this tell you about \overline{DE} and \overline{BC} ? Explain.

1c. Compare your results with those of other students. Then state a conjecture about a midsegment of a triangle.

Prove the Midsegment Theorem.

2

A midsegment of a triangle is parallel to the third side of the triangle and is half as long as the third side.

Given: \overline{DE} is a midsegment of $\triangle ABC$. **Prove:** $\overline{DE} \parallel \overline{BC}$ and $DE = \frac{1}{2}BC$.

- A Use a coordinate proof. Place $\triangle ABC$ on a coordinate plane so that one vertex is at the origin and one side lies on the *x*-axis, as shown. For convenience, assign vertex *C* the coordinates (2p, 0) and assign vertex *A* the coordinates (2q, 2r).
- **B** Use the midpoint formula to find the coordinates of *D* and *E*. Complete the calculations.

- $D\left(\frac{2q+0}{2},\frac{2r+0}{2}\right) = D(q,r) \qquad E\left(\frac{+}{2},\frac{+}{2}\right) = E\left(\frac{-}{2},\frac{-}{2}\right) = E\left(\frac{$
- **C** To prove that $\overline{DE} \parallel \overline{BC}$, first find the slopes of \overline{DE} and \overline{BC} .

What conclusion can you make based on the slopes? Why?

D Show how to use the distance formula to prove that $DE = \frac{1}{2}BC$.

REFLECT

- **2a.** Explain why it is more convenient to assign the coordinates as C(2p, 0) and A(2q, 2r) rather than C(p, 0) and A(q, r).
- **2b.** Explain how the perimeter of $\triangle JKL$ compares to that of $\triangle MNP$.

- 7. Use the distances in the chart to find the perimeter of the Bermuda Triangle.
- 8. Find the perimeter of the midsegment triangle within the Bermuda Triangle.
- 9. How does the perimeter of the midsegment triangle compare to the perimeter of the Bermuda Triangle?

Write a two-column proof that the perimeter of a midsegment triangle is half the perimeter of the triangle.

10. **Given:** \overline{US} , \overline{ST} , and \overline{TU} are midsegments of $\triangle PQR$.

Prove: The perimeter of
$$\triangle STU = \frac{1}{2}(PQ + QR + RP)$$
.

Problem Solving

- 1. The vertices of $\triangle JKL$ are J(-9, 2), K(10, 1), and L(5, 6). \overline{CD} is the midsegment parallel to \overline{JK} . What is the length of \overline{CD} ? Round to the nearest tenth.
- Is XY a midsegment of △LMN if its endpoints are X(8, 2.5) and Y(6.5, -2)? Explain.
- 2. In $\triangle QRS$, QR = 2x + 5, RS = 3x 1, and SQ = 5x. What is the perimeter of the midsegment triangle of $\triangle QRS$?

4. The diagram at right shows horseback riding trails. Point *B* is the halfway point along path \overline{AC} . Point *D* is the halfway point along path \overline{CE} . The paths along \overline{BD} and \overline{AE} are parallel. If riders travel from *A* to *B* to *D* to *E*, and then back to *A*, how far do they travel?

6. In triangle *HJK*, $m \angle H = 110^{\circ}$, $m \angle J = 30^{\circ}$, and $m \angle K = 40^{\circ}$. If *R* is the midpoint of \overline{JK} , and *S* is the midpoint of \overline{HK} , what is $m \angle JRS$?

F 150°	H 110°
G 140°	J 30°

Choose the best answer.

 Right triangle *FGH* has midsegments of length 10 centimeters, 24 centimeters, and 26 centimeters. What is the area of △*FGH*?

A 60 cm ²	C 240 cm ²
B 120 cm ²	D 480 cm ²

Use the diagram for Exercises 7 and 8.

On the balance beam, *V* is the midpoint of \overline{AB} , and *W* is the midpoint of \overline{YB} .

7. The length of \overline{VW} is $1\frac{7}{8}$ feet. What is AY?

A	$\frac{7}{8}$ ft	С	$3\frac{3}{4}$ ft
В	$\frac{15}{16}$ ft	D	$7\frac{1}{2}$ ft

The measure of ∠AYW is 50°. What is the measure of ∠VWB?

F	45°	Н	90°
G	50°	J	130°