Name

\qquad
\qquad

The Triangle Midsegment Theorem

Focus on Reasoning

Essential question: What must be true about the segment that connects the midpoints of two sides of a triangle?

A midsegment of a triangle is a line segment that connects the midpoints of two
 sides of the triangle.

1 Investigate midsegments.

A Use geometry software to draw a triangle.

B Label the vertices A, B, and C.

C Select $\overline{A B}$ and construct its midpoint. Select $\overline{A C}$ and construct its midpoint. Label the midpoints D and E.

D Draw the midsegment, $\overline{D E}$.

E Measure the lengths of $\overline{D E}$ and $\overline{B C}$.

F Measure $\angle A D E$ and $\angle A B C$.

G Drag the vertices of $\triangle A B C$ to change its shape. As you do so, look for relationships in the measurements.

REFLECT

1a. How is the length of $\overline{D E}$ related to the length of $\overline{B C}$?

1b. How is $\mathrm{m} \angle A D E$ related to $\mathrm{m} \angle A B C$? What does this tell you about $\overline{D E}$ and $\overline{B C}$? Explain.

1c. Compare your results with those of other students. Then state a conjecture about a midsegment of a triangle.
\qquad
\qquad

2 Prove the Midsegment Theorem.
A midsegment of a triangle is parallel to the third side of the triangle and is half as long as the third side.

Given: $\overline{D E}$ is a midsegment of $\triangle A B C$.
Prove: $\overline{D E} \| \overline{B C}$ and $D E=\frac{1}{2} B C$.

A Use a coordinate proof. Place $\triangle A B C$ on a coordinate plane so that one vertex is at the origin and one side lies on the x-axis, as shown. For convenience, assign vertex C the coordinates $(2 p, 0)$ and assign vertex A the coordinates $(2 q, 2 r)$.

B Use the midpoint formula to find the coordinates of D and E. Complete the calculations.

$D\left(\frac{2 q+0}{2}, \frac{2 r+0}{2}\right)=D(q, r)$
$E\left(\frac{+}{2}, \frac{+}{2}\right)=E($
C To prove that $\overline{D E} \| \overline{B C}$, first find the slopes of $\overline{D E}$ and $\overline{B C}$.
Slope of $\overline{D E}=\frac{-}{-}=$

Slope of $\overline{B C}=$ \square
What conclusion can you make based on the slopes? Why?

D Show how to use the distance formula to prove that $D E=\frac{1}{2} B C$.

REFLECT

2a. Explain why it is more convenient to assign the coordinates as $C(2 p, 0)$ and $A(2 q, 2 r)$ rather than $C(p, 0)$ and $A(q, r)$.

2b. Explain how the perimeter of $\triangle J K L$ compares to that of $\triangle M N P$.

\qquad
\qquad
\qquad

Additional Practice

Use the figure for Exercises 1-6. Find each measure.

1. HI \qquad 2. $D F$ \qquad
2. $G E$ \qquad 4. $\mathrm{m} \angle H I F$ \qquad
3. $m \angle D$ \qquad
4. $\mathrm{m} \angle H G D$ \qquad
The Bermuda Triangle is a region in the Atlantic Ocean off the southeast coast of the United States. The triangle is bounded by Miami, Florida; San Juan, Puerto Rico; and Bermuda. In the figure, the dotted lines

	Dist. (mi)
Miami to San Juan	1038
Miami to Bermuda	1042
Bermuda to San Juan	965

 are midsegments.
7. Use the distances in the chart to find the perimeter of the Bermuda Triangle.
8. Find the perimeter of the midsegment triangle within the Bermuda Triangle.
9. How does the perimeter of the midsegment triangle compare to the perimeter of the Bermuda Triangle?

Write a two-column proof that the perimeter of a midsegment triangle is half the perimeter of the triangle.
10. Given: $\overline{U S}, \overline{S T}$, and $\overline{T U}$ are midsegments of $\triangle P Q R$.

Prove: The perimeter of $\triangle S T U=\frac{1}{2}(P Q+Q R+R P)$.

Problem Solving

1. The vertices of $\triangle J K L$ are $J(-9,2), K(10,1)$, and $L(5,6) . \overline{C D}$ is the midsegment parallel to $\overline{J K}$. What is the length of $\overline{C D}$? Round to the nearest tenth.
2. In $\triangle Q R S, Q R=2 x+5, R S=3 x-1$, and $S Q=5 x$. What is the perimeter of the midsegment triangle of $\triangle Q R S$?
3. Is $X Y$ a midsegment of $\triangle L M N$ if its endpoints are $X(8,2.5)$ and $Y(6.5,-2)$? Explain.
\qquad
\qquad

4. The diagram at right shows horseback riding trails. Point B is the halfway point along path $\overline{A C}$. Point D is the halfway point along path $\overline{C E}$. The paths along $\overline{B D}$ and $\overline{A E}$ are parallel. If riders travel from A to B to D to E, and then back to A, how far do they travel?

Choose the best answer.

5. Right triangle $F G H$ has midsegments of length 10 centimeters, 24 centimeters, and 26 centimeters. What is the area of $\triangle F G H$?
A $60 \mathrm{~cm}^{2}$
C $240 \mathrm{~cm}^{2}$
B $120 \mathrm{~cm}^{2}$
D $480 \mathrm{~cm}^{2}$

Use the diagram for Exercises 7 and 8.

On the balance beam, V is the midpoint of $\overline{A B}$, and W is the midpoint of $\overline{Y B}$.
7. The length of $\overline{V W}$ is $1 \frac{7}{8}$ feet. What is $A Y$?
A $\frac{7}{8} \mathrm{ft}$
C $3 \frac{3}{4} \mathrm{ft}$
B $\frac{15}{16} \mathrm{ft}$
D $7 \frac{1}{2} \mathrm{ft}$
8. The measure of $\angle A Y W$ is 50°. What is the measure of $\angle \mathrm{VWB}$?
F 45°
H 90°
G 50°
J 130°
6. In triangle $H J K, \mathrm{~m} \angle H=110^{\circ}, \mathrm{m} \angle \mathrm{J}=30^{\circ}$, and $\mathrm{m} \angle K=40^{\circ}$. If R is the midpoint of $\overline{J K}$, and S is the midpoint of $\overline{H K}$, what is $\mathrm{m} \angle J R S$?

$$
\begin{array}{ll}
\text { F } 150^{\circ} & \text { H } 110^{\circ} \\
\text { G } 140^{\circ} & \mathrm{J} 30^{\circ}
\end{array}
$$

