\qquad
\qquad
\qquad

Pairs of Angles

Going Deeper

Essential question: How can you use angle pairs to solve problems?

Recall that two rays with a common endpoint form an angle. The two rays form the sides of the angle, and the common endpoint marks the vertex. You can name an angle several ways: by its vertex, by a point on each ray and the vertex, or by a number.

Angle names: $\angle A B C, \angle C B A, \angle B, \angle 1$
It is useful to work with pairs of angles and to understand how pairs of angles relate to each other. Congruent angles are angles that have the same measure.

G-C0.1.1
 1 E X P LORE Measuring Angles

A Using a ruler, draw a pair of intersecting lines. Label each angle from 1 to 4.

B Use a protractor to help you complete the chart.

Angle	Measure of Angle
$\mathrm{m} \angle 1$	
$\mathrm{~m} \angle 2$	
$\mathrm{~m} \angle 3$	
$\mathrm{~m} \angle 4$	
$\mathrm{~m} \angle 1+\mathrm{m} \angle 2$	
$\mathrm{~m} \angle 2+\mathrm{m} \angle 3$	
$\mathrm{~m} \angle 3+\mathrm{m} \angle 4$	
$\mathrm{~m} \angle 4+\mathrm{m} \angle 1$	

REFLECT

1a. Conjecture Share your results with other students. Make a conjecture about pairs of angles that are opposite of each other. Make a conjecture about pairs of angles that are next to each other.
\qquad
\qquad

Vertical angles are the opposite angles formed by two intersecting lines. Vertical angles are congruent because the angles have the same measure. Adjacent angles are pairs of angles that share a vertex and one side but do not overlap.

Complementary angles are two angles whose measures have a sum of 90°.
Supplementary angles are two angles whose measures have a sum of 180°. You have discovered in Explore 1 that adjacent angles formed by two intersecting lines are supplementary.

c-co.3.9

2 E X A M P L E Identifying Angles and Angle Pairs

Use the diagram below.

A Name a pair of adjacent angles.
B Name a pair of vertical angles.
C Name a pair of complementary angles.
D Name an angle that is supplementary to $\angle C F E$. \qquad
E Name an angle that is supplementary to $\angle B F D$. \qquad
F Name an angle that is supplementary to $\angle C F D$. \qquad
G Name a pair of non-adjacent angles that are complementary.

REFLECT

2a. What is the measure of $\angle D F E$? Explain how you found the measure.
\qquad
\qquad
2b. Are $\angle C F B$ and $\angle D F E$ vertical angles? Why or why not?
\qquad
\qquad
2c. Are $\angle B F D$ and $\angle A F E$ vertical angles? Why or why not?

A-CED.1.1
3 E X A M P L E Finding Angle Measures
Find the measure of each angle.
A $\angle B D C$

$\angle B D C$ and \qquad are \qquad angles.

The sum of their measures is \qquad
Write an equation to help you find the measure of $\angle B D C$.
$75+x=$ \qquad
In the box, solve the equation for x.

$$
\mathrm{m} \angle B D C=
$$

\square
B $\angle E H F$

$\angle E H F$ and \qquad are \qquad angles.

The sum of their measures is \qquad .

In the box, write and solve an equation to help you find $\mathrm{m} \angle E H F$.

$$
\mathrm{m} \angle E H F=
$$

\qquad

REFLECT

3a. A friend claims that two acute angles are complementary and their measures are $2 x^{\circ}$ and $(30-5 x)^{\circ}$. If your friend is right, what equation must be true?
\qquad
\qquad
3b. Solve the equation you found and interpret the answer. Evaluate your friend's claim.
\qquad
\qquad
\qquad

PRACTICE

Use the figure for Exercises 1-5.

1. $\mathrm{m} \angle Q U P+\mathrm{m} \angle P U T=$ \qquad
2. Name a pair of supplementary angles.
3. Name a pair of vertical angles.

4. Name a pair of adjacent angles.
5. What is the measure of $\angle Q U N$? Explain your answer.
\qquad
\qquad
Solve for the indicated angle measure or variable.
6. $\mathrm{m} \angle Y L A=$ \qquad
7. $x=$ \qquad

8. The railroad tracks meet the road as shown.

The town will allow a parking lot at angle J if the measure of angle J is greater than 38°. Can a parking lot be built at angle J ?
Why or why not?

9. Error Analysis A student states that when the sum of two angle measures equals 180°, the two angles are complementary. Explain why the student is incorrect.
\qquad
\qquad
\qquad
\qquad Date \qquad

Additional Practice

1. $\angle P Q R$ and $\angle S Q R$ form a linear pair. Find the sum of their measures. \qquad
2. Name the ray that $\angle P Q R$ and $\angle S Q R$ share. \qquad

Use the figures for Exercises 3 and 4.

3. supplement of $\angle Z$ \qquad
4. complement of $\angle Y$ \qquad

5. An angle measures 12 degrees less than three times its supplement. Find the measure of the angle. \qquad
6. An angle is its own complement. Find the measure of a supplement to this angle.
7. $\angle D E F$ and $\angle F E G$ are complementary. $\mathrm{m} \angle D E F=(3 x-4)^{\circ}$, and $\mathrm{m} \angle F E G=(5 x+6)^{\circ}$.

Find the measures of both angles. \qquad
8. $\angle D E F$ and $\angle F E G$ are supplementary. $\mathrm{m} \angle D E F=(9 x+1)^{\circ}$, and $\mathrm{m} \angle F E G=(8 x+9)^{\circ}$.

Find the measures of both angles. \qquad

Use the figure for Exercises 9 and 10.

In 2004, several nickels were minted to commemorate the Louisiana Purchase and Lewis and Clark's expedition into the American West. One nickel shows a pipe and a hatchet crossed to symbolize peace between the American government and Native American tribes.
9. Name a pair of vertical angles.
\qquad
\qquad
10. Name a linear pair of angles.

11. $\angle A B C$ and $\angle C B D$ form a linear pair and have equal measures. Tell if $\angle A B C$ is acute, right, or obtuse.
12. $\angle K L M$ and $\angle M L N$ are complementary. $\overrightarrow{L M}$ bisects $\angle K L N$. Find the measures of $\angle K L M$ and $\angle M L N$.

Problem Solving

Use the drawing of part of the Eiffel Tower for Exercises 1-5.

1. Name a pair of angles that appear to be complementary.
2. Name a pair of supplementary angles.
3. If $\mathrm{m} \angle C S W=45^{\circ}$, what is $\mathrm{m} \angle J S T$? How do you know?
\qquad
4. If $\mathrm{m} \angle F K B=135^{\circ}$, what is $\mathrm{m} \angle B K L$? How do you know?

\qquad
\qquad
5. Name three angles whose measures sum to 180°.

Choose the best answer.

6. A landscaper uses paving stones for a walkway.

Which are possible angle measures for a° and b° so that the stones do not have space between them?
A $50^{\circ}, 100^{\circ}$
C $75^{\circ}, 105^{\circ}$
B $45^{\circ}, 45^{\circ}$
D $90^{\circ}, 80^{\circ}$

7. The angle formed by a tree branch and the part of the trunk above it is 68°. What is the measure of the angle that is formed by the branch and the part of the trunk below it?
F 22°
H 158°
G 112°
J 180°
8. $\angle R$ and $\angle S$ are complementary. If $\mathrm{m} \angle R=(7+3 x)^{\circ}$ and $\mathrm{m} \angle S=(2 x+13)^{\circ}$, which is a true statement?
A $\angle R$ is acute.
C $\angle R$ and $\angle S$ are right angles.
$\mathrm{B} \angle R$ is obtuse.
D $\mathrm{m} \angle S>\mathrm{m} \angle R$

